
SEARCH ON THE CLOUD FILE SYSTEM

Rodrigo Savage
1
, Dulce Tania Nava

1
, Norma Elva Chávez

1
, Norma Saiph Savage

2

Facultad de Ingeniería, Departamento de Computación, Universidad Nacional Autónoma de México (UNAM) , Mexico
1

Computer Science Department, University of California, Santa Barbara,USA
2

{rodrigosavage, opheliac}@comunidad.unam.mx, norma@fi-b.unam.mx, saiph@cs.ucsb.edu

ABSTRACT

Research in peer-to-peer file sharing systems has focused

on tackling the design constraints encountered in

distributed systems, while little attention has been devoted

to the user experience: these systems always assume the

user knows the public key of the file they are searching.

Yet average users rarely even apprehend that file public

keys exist. File sharing systems which do consider the

user experience and allow users to search for files by their

name, generally present centralized control and they

show several severe vulnerabilities, that make the system

unreliable and insecure. The purpose of this investigation

is to design a more complete distributed file sharing

system that is not only trustable, scalable and secure,

but also leverages the user's cognitive workload. We

present a novel algorithm that by mining a file's

information designates relevant keywords for the file

automatically. These keywords are later utilized for the

file search and retrieval. We also designed a metric for

assigning relevancy to the files retrieved in a search,

bettering the search results. We also create a modern

mechanism for enabling file searches based on categories.

Search on the Cloud is built on Pastry. Our system

integrates these components, as well as good design

principals from previous distributed file sharing systems

to offer a trustable, scalable, secure and novel distributed

file sharing system that an average user could utilize for

file search. Our system is named ―Search on the Cloud‖.

The novelty of our approach is that our system provides

an intuitive search modality, while still preserving an

entirely distributed approach.

KEY WORDS

DISTRIBUTED COMPUTING, PEER-TO-PEER

COMPUTING, CLOUD COMPUTING,

HETEROGENEOUS COMPUTING, GRID

COMPUTING, DISTRIBUTED SHARED MEMORY,

NETWORK SECURITY, NETWORK

PERFORMANCE, INTERCONNECTION NETWORKS,

ALGORITHM DESIGN, ALGORITHMS FOR

HETEROGENEOUS SYSTEMS, APPLICATIONS,

COMMUNICATION ALGORITHMS, LOAD

BALANCING, MESSAGE ROUTING, PROTOCOL

DESIGN, SECURITY AND RELIABILITY, META-

DATA CLUSTERING

1. Introduction

Distributed systems are a collection of autonomous

computers connected through a network. A distributed

system permits the computers to share resources and

activities, allowing the end user to perceive the system as

a powerful single computing machine. Peer-to-peer

systems are a particular type of distributed systems, where

all computers, also known as nodes, present identical

responsibilities and capabilities. Peer-to-peer systems

have many advantages over traditional centralized

systems: they present better availability, scalability, fault

tolerance, lower maintenance costs as well as lower

operation and deployment costs. The drawback of these

systems is that they encounter several design challenges.

For example the system must remain functional, despite

the varying number of uncontrolled participating nodes.

Furthermore the system must be decentralized and

symmetric; load should also be balanced among all nodes.

Additionally, despite the system’s size, data search on

peer-to-peer systems must be fast and robust (scalable). A

vast number of researchers have concentrated on solving

the design challenges referred above. A problem that has

been widely tackled is the lookup problem. The lookup

problem assumes that a node A inserts a file x into the

system and moments after, a node B seeks to retrieve the

file x. Considering that the node A is no longer online,

the lookup problem intends to find the location of a node

that has a replica of the file x. Examples of novel

architecture algorithms that were proposed to solve the

lookup problem are CAN[16], Chord[15], Pastry[14], and

Tapestry[17]. Systems that also solved the lookup

problem, while presenting a more social design are

Napster [18], Fast track[19], Gnutella[18]. Because of the

characteristics of these systems, it is possible to utilize

them as a base for developing more complex distributed

systems such as PAST[14], Pond[20], CFS[21] and

bittorrent[1].

 PAST is a large scale internet based global storage utility

that provided scalability, high availability and security.

With PAST users were capable of inserting files into the

system and later retrieving them, or retrieving files that

other users shared. It is important to note, that to

accomplish this operation, the user needed to know the

file’s public key. PAST looked up files by utilizing

Pastry. PAST made several improvements to file sharing,

but because PAST’s lookups were based on the file’s

public key, the system doubtlessly encountered many

usability problems. In specific, new users that were

unaware of the existence of the public keys, would be

incapable of finding their file of interest. To overcome

this problem, a centralized web server, that provided the

public keys to the files the users were searching for,

would be required. But adding a centralized web server to

the system would increase the system’s vulnerabilities to

single points of failure. Additionally PAST did not handle

all of the design issues encountered in peer-to-peer

systems. Specifically it did not address load balance:

PAST made no partition on the files that were inserted.

Therefore if a large file was attempted to be added to the

system, if it did not fit in one single node, the file would

not be inserted, despite the fact that the system as a whole

might present sufficient memory.

Another interesting large scale peer-to-peer storage

system was Pond, an implementation of OceanStore [20].

 Pond presented several improvements and differences

over PAST, the only problem was thatPond presented the

same usability issue PAST encountered: the system

required the user to know the public key of the file they

were searching.

A file sharing system, which did consider in more detail

the user experience when sharing and seeking files is

Bittorrent[1]. Bittorent is a file downloading protocol that

together with sites, such as Piratebay.org,

Lokotorrent.com and trackers servers provides probably

the biggest distributed file-sharing system in the world

Web pages supporting Bittorrent function by showing for

each available file, its name, size, current numbers of

downloaders and seeds, and the name of the person who

uploaded the file. To download the file a user clicks on a

link that points to a .torrent meta-data file. The .torrent

metadata files are stored and distribute among .torrent file

servers. This mechanism, permits users to search for files

by simply inputting related keywords of the file name and

querying a web server. Albeit Bittorrent presented a

significant improvement on user experience in file sharing

systems, Bittorrent is not a truly distributed system, the

.torrent file servers have centralized the search.

Additionally the web servers, such as Piratabay and

Lokotorrents provide a user interface to locate the correct

.torret file necessary for a search, but this creates a

window of vulnerability and creates increasingly high

maintenance costs. Furthermore, the architectures

involving BitTorrent/WebServer/Tracker present
several problems, which can be divided into four global

types [14]: the first problem involves the web server and

the fact that when it switches IP numbers it can be down

for significant periods of time. The second issue concerns

the mirrors, which rarely survive longer than a few days,

due to the high demand of daily visitors. The third

problem involves the .torrent file servers, which are

occasionally unavailable, blocking all new downloads.

The final vulnerability involves the trackers, which are

a frequent target for denial-of-service attacks and are

costly to operate due to GBytes of daily bandwidth

consumption.

The majority of the research in file sharing systems has

focused on bettering the design constraints encountered in

distributed systems and little attention has been paid to the

user experience: These systems require the user to know

beforehand the public key of the file they are searching

for. It is evident that novice users would have a very

difficult time utilizing their services, because they are

likely to be unaware of the existence of public keys.

 As these systems fail to acknowledge the novice user’s

needs, they are ignoring basic user interface design

principles, which state that a variety of users with diverse

backgrounds, should be able to interact with the system.

On the other hand, file sharing systems which do present

more concern for the user experience, such as Bittorrent,

have disregarded many of the principles of distributed

systems, and present several severe vulnerabilities.

The aim of this study is to the design a more complete

distributed file sharing system that while exhibiting ease

of use and transparency for the user, still presents high

availability, scalability and is fault tolerant. As well as

keeping maintenance, operation and deployment costs to a

minimal. Our system, named ―Search on the Cloud‖,

allows for a more user intuitive file search. Our system

assumes that when an average user searches for a file

distinct information about the file is known, such as

certain words that appear in the file name or content.

Search on the cloud utilizes the user’s search query to

automatically generate keywords. For each keyword, its

public key is fetched and the keyword is then searched for

in the network. Within the network, each keyword has an

associated meta-data block that holds references to files

for which the keyword in question is meaningful. For

each file the keyword has an assigned relevancy score.

The K files with the highest relevancy score are retrieved

and presented to the user. The relevancy score each file

has for a certain keyword is assigned upon upload by

mining the data file.

Additionally, for usability purposes Search on the Cloud

does not follow the conventional tree folder structure. Our

system acknowledges that files can potentially belong to

different categories (or folders). Therefore file search can

be done by selecting multiple categories. For example a

user may wish to list all his homework files from

freshman year that are related with Artificial Intelligence.

This type of query would be difficult to find on a

conventional folder system, because the files could be in

the Artificial Intelligence folder, or the freshman year

folder, or any possible combination of these three folders.

With Search on the Cloud's design, this type of

query becomes easy and transparent for the user to do.

The novelty of our approach is that in difference to

previous file sharing systems, we present an intuitive

search modality, while preserving the fully distributed

characteristics of the system. In the following sections, we

present background terminology related with our system,

and provide greater detail of the specifics of our system.

Finally conclusions are presented.

2. Background

2.1 Design of Pastry

A node is an active computer that is attached to a network,

and is capable of sending, receiving, or forwarding

information over a communications channel. Pastry[4]

gives each node a randomly chosen key, which

conceptually indicates its position on the pastry ring

showed in figure 1. The digits in the key space are in base

2b, where b is a parameter typically set to 4 thus forming

128-bit keys. Assuming a network consisting of N nodes,

Pastry can route to the numerically closest node to a given

key in less than steps under normal operation.

Despite node failures, eventual delivery is guaranteed

unless nodes with adjacent node keys fail

simultaneously (|L| is usually 16 or 32). Pastry routes

messages to the node whose key is numerically closest to

the message key. In each routing step, a node normally

forwards the message to a node that’s key shares with the

message key a prefix that is at least one digit (or bits)

longer than the prefix that the key shares with the present

node’s key. If no such node is known, the message is

forwarded to a node whose key shares a prefix with the

key as long as the current node, but is numerically closer

to the key than the present node’s key. A node’s routing

table, is organized into rows with (2
b
-1) entries

each, thus implying a node state of .

Each entry in the routing table contains the IP address of

the potentially nodes whose key have the appropriate

prefix; The neighborhood set M contains the node keys

and IP addresses of the |M| nodes that are closest

(according the proximity metric) to the node. The

neighborhood set is useful in maintaining locality

properties. The leaf set L is the set of nodes with the |L|/2

numerically closest larger node keys, and the |L|/2 nodes

with numerically closest smaller node keys, relative to the

present node key. The leaf set is used during the message

routing. Typical values for |L| and |M| are 2
B
 or 2x2

b
.

Figure 1 – Pastry Ring. Node with key 88865 inserts foo.file, foo.file is

partitioned into data block that are referred by the keyblock. H(str)

representes lookup(str). For example purposes 5 digit keys are used
instead of 2128 Keys

2.2 Terminology and definitions:

Given a filename x, lookup(x) makes reference to the 128

bit unique number obtained by applying SHA-1[12] to x

(also called key). A filename key is referred by

lookup(filename). A sentence is a search query or a file

name plus relevant file content information. The process

for obtaining the keywords of a sentence is done by

combining each word in the sentence, ordering the words

in the combination alphabetically and upper-casing all the

letters of each word as showed in table 3. For each

keyword in a sentence a Meta-Data block is attached

(showed in table 1). In specific the Meta-Data block (table

1) stores in entries the sentence that produced the

keyword, the keys of the files associated with the

keyword (this key is produced by lookup(sentence the

relevancy of each of the file with respect to the keyword,

number of downloads as well as other file related

information. The operator name(Meta-Data) yields the

keyword attached to the Meta-Data block.

2.2.1 Blocks

Blocks are the primary form of storage, all blocks are size

n kilobytes (n is usually 512). Blocks are stored in the

nodes whose key is numerically closer to their own key as

showed in figure 1. A Data Block as showed in figure 1 is

chuck of data, portion of a file (useless if found alone).

A Key Block (Inode, key indirections) as showed in

figure 1, is crucial for reconstructing the file. An similar

idea to that of [7][8][9] was followed. The key block

contains a header describing the file, with information

such as size, name, IP of inserter, time-stamp, size of

header, number of Data blocks and other related file

information. Following the header, the keys of each Data

Block for reconstructing the file are stored in sequential

order. A Meta-Data Block as showed in table 1 is specific

only for one keyword. The Meta-Data Block contains

information about the data source from which the

keyword was generated from, as well as information

about the most relevant files associated to the particular

keyword. The file information that is stored is the

filename key, popularity of the file (number of

downloads), percentage of relevance of the file to the

keyword and other file related information. The Meta-

Data block is referred as lookup(name(Meta-Data)). The

meta-data block has a priority queue [3] design structure,

for storing the relevant files associated with a keyword. In

consequence every time a new entry arrives, it is ordered

according to the relevance of the search thus making the

results pre-ordered when a search is executed. A User

Root block is specific only for one user, it contains

information about the user's files. Each data entry holds

the file name, size, modification date, IP, time, and the

Pastry key referred to the file. A User Category block as

showed in table 2 allows users to add categories to their

files. A User Category block as showed in table 2 allows

users to add categories to their files. The User Category

block is specific only for one category. The User category

Block stores the information related to all the files of the

user that belong to that particular category. Each entry

contains the file name, usage, size, date, IP, time and key

referred by the file.

2.2.2 Messages

Given a 128bit number key and a node sender,

insertMessage(key,sender) is a pastry message that is

routed to the established key and that has been sent by

sender, this message contains all necessary information so

that when the node numerically closer to key received the

message it may form a point to point (p2p) connection

with sender and request the block referred by key.

getMessage(key,sender) is a pastry message that is routed

to the establish key and that has been sent by sender, this

message contains all necessary information so that when

the node numerically closer to key received the message it

may form a p2p connection to sender and send the block

requested referred by key. insertMetaDataMessage(key,

meta-data, source) is a pastry message routed to the

establish key and that has been sent by source, this

message contains one meta-data entry so that when the

node numerically closer to key received the message it

will add the entry to the meta-data block presented in

Table 1. insertUserCategoryMessage(key,uce,source) is a

pastry message routed to the establish key and that has

been sent by source, this message contains one user’s

category entry so that when the node responsible of the

received the message it will add the entry to the

corresponding user category block as showed in Table 2.

Table 1: Meta-Data block referred by 22345 obtained by

lookup(BARFOO). Keyword BARFOO

Relevance Popularity size Date IP File name

0.66 54 43543 14-12-64 x.x.x.x Juan Foo

bar.mp3

0.66 34 76755 23-53-23 x.x.x.x foo hello

bar.mp3

0.5 55 32453 23-56-79 x.x.x.x Bar foo eat
code.mp3

2/5 = 0.4 0 64675 12-34-87 x.x.x.x Bar at night

kills foo.mp3

Table 2: Category block referred by key 76298 obtained by

lookup(name(user)+category)

Filename Usage Key Insertion Date IP Size (kb)

File.txt 32 43243 14-12-99 x.x.x.x 45

Foo.c 15 98755 23-11-99 x.x.x.x 87, 323

Bar.h 5 12453 23-09-79 x.x.x.x 2,143

Im.doc 3 75343 12-04-87 x.x.x.x 43,212

3. Search on the Cloud set of Operations

3.1 Community Side

1. Insert a public file

2. Get a public file

3. Search for a public file

3.2 User Side

1. Insert a user (private) file

2. Get a user file

3. List user files

4. Add categories to user file

5. List files filtered by categories from user And

sort them by Usage

3.3 Community Side Operations Definitions

3.1.1 Insert a Public File

When a node source seeks to insert a file x to the system,

a new keys block for the file x is created. This keys block

will be referred by lookup(x); The file x is then split into

data blocks, each data block is referred by lookup(x+part)

where 'part' corresponds to the index of each data block.

Each of the resulting keys is then stored in the key block

of file x. For each data block a

insertMessage(lookup(x+part),source) operations

are simultaneously performed. Each of the resulting

messages is routed through the pastry ring in consequence

the node that is numerically closer to lookup(x+part)

received the corresponding data block by forming a p2p

connection with source. The last operation, is the

insertion of the key block, which is inserted through

insertMessage(lookup(x),source). Figure 1 presents an

overview of the steps involved in the insertion of a file to

the system. For each keyword extracted from the file a

Meta-Data entries is created and a

insertMetaDataMessage(lookup(keyword),md,source) is

routed to key and md represents in this case an entry in

table 3.

3.1.2 Get a public file

When a node source seeks to retrieve a file x from the

system, a new getMessage(lookup(x),source) is created

and routed through the pastry ring. Then when the node

responsible for the key block receives the message it

forms a p2p connection with the source and sends the key

block file. Afterwards source extracts from the key block

the necessary keys to reconstruct the file. For each key a

getMessage(key,source) is routed, requesting the

corresponding data block referred by the key to the node

that is numerically closer to key. In consequence the

responsible node forms a p2p connection with source,

sending the data block. After all the data blocks are

received from the corresponding nodes, the data blocks

are joined together following the order indicated in the

key file.

3.1.3 Search a public file

When a node source wants to find a file x on the system

by typing a sentence, a meta-data listener is started and a

meta-data master will manage all of the meta-data blocks

generated from the keywords of the sentence. For each

keyword formed by the combination of the words in

sentence, as showed on table 3 , a

getMessage(lookup(keyword),source) is routed thus the

node responsible for lookup(keyword) will form a p2p

connection to send the meta-data block to source. When

the meta-data block is received, meta_data_master will

merge sort it with other previous meta-data blocks and

show the new results. The complexity of the search

depends upon m keywords and n metadata block entries

per keyword making it O(m*n).

3.2.1 Insert a User File

When a user wants to insert a file x with c categories to

the system, a new keys block for the file x is created and

is referred by lookup(user+x). The file x is subsequently

split into data blocks, each data block is referred by

lookup(user+x+part). Each key is then stored in the key

block. For each data

block insertMessage(lookup(user+x+part),source) are

simultaneously routed through the pastry ring. Lastly the

key block is inserted through

insertMessage(lookup(user+x),source).

A user category entry (uce) is created for file x and an

insertUserCategoryMessage(lookup(user+root),uce,user)

is routed, where root is the root directory (category) to

where all the uce are inserted to, making available a list of

all the files the user has inserted. Afterwards for each

category in c, a user category entry is created for file x

and an

insertUserCategoryMessage(lookup(user+category),uce,u

ser) is routed adding the uce to the corresponding user

category block.

3.2.2 Get a User File

When a user wants to retrieve a file x from the system, a

getMessage(lookup(user+x),source) is routed through the

pastry ring. When the node responsible of the key block

referred by lookup(user+x) receives the message it forms

a p2p connection with user and sends the key block file.

Afterwards the user will extract the information from the

key block acquiring the keys needed to reconstruct the

file. For each key it will route a getMessage(key,source).

When all the data blocks are received from the

responsible nodes, the data blocks are joined together

following the order indicated in the key file.

3.2.4 Add a Category to file

When a user desires to add a category c to file x. a user

category entry is created for file x and an

insertUserCategoryMessage(lookup(user+c),uce,user) is

routed thus adding the entry to the category block.

3.2.5 List files filtered by categories

When a user wants to filter his documents by categories, a

master listener is created for the user. For each c in

categories a getMessage(lookup(user+c),user) is routed

thus the node responsible for lookup(user+c) will form a

p2p connection to send the category block to user. When

a category block is received, the master listener of the

user will merge sort it with other previous category blocks

and show the new results. The complexity of the list

depends upon m categories and n user category entries per

category block, thus O(m*n)

Table 3: shows the meta-data entries that are formed when a node
publish the song: Juan Foo bar.mp3

keyword Key Relevance File-name

JUAN lookup(JUAN)
99483

1/3 = 0.33 Juan Foo bar.mp3

FOO 43212 1/3 = 0.33 Juan Foo bar.mp3

BAR 67277 1/3 = 0.33 Juan Foo bar.mp3

JUANFOO 90523 1/3 = 0.33 Juan Foo bar.mp3

BARJUAN 32233 2/3 = 0.66 Juan Foo bar.mp3

BARFOO 22345 2/3 = 0.66 Juan Foo bar.mp3

BARFOOJ

UAN

86423 3/3 = 1.0 Juan Foo bar.mp3

4. Replication

4.1 Inserting Replicas

When a block is inserted, Pastry routes the insertMessage

to the node that is numerically the closest to the block

key. This Node then sends a direct insertMessage to the k

nodes from its leafset, informing the nodes to request the

block that has been inserted. Each of these nodes then

forms a p2p connection with the sender of the

insertMessage and stores a copy of the block. The

replication factor k depends on the availability and

persistence requirements of the block and may vary

between blocks. A lookup request for a block is routed

towards the live node with a key that is numerically

closest to the requested block key. This procedure ensures

that a file remains available as long as one of the k nodes

that stores the file is alive and reachable via the Internet;

with high probability, the set of nodes that store the file

are diverse in geographic location, administration,

ownership, network connectivity, rule of law, etc.; and the

number of blocks assigned to each node is roughly

balanced.

4.2 Updating Replicas

All nodes have a log with the blocks that they manage,

with information about where the block's physical

location within a node is, the block time stamp (last time

updated), and the key. When a node joins the ring, it

requests the log from each of the nodes in its leafset.

Afterwards it searches for any updates (comparing the

timestamp from its log and the other logs from each node

of its leafset), if any updates are present (a node from the

leafset has a new version of a block), the node will

request the newer version of the block thus updating its

own log and blocks.

5. Updating files

Search on the Cloud is a read only file system for public

files, this is due to the issue that anyone could update a

public file and destroy information from that file. If there

is a collision with the key (the file already existed), a new

key will be calculated using information of the filename

and the file size. If there is still a collision, the node will

be informed that the file is already in the system and be

requested to modify the filename. User files may be

updated, only the latest version will be kept in the system.

To update a block, an insertMessage is routed through the

ring to the blocks key. When the node numerically closer

to the key receives the message, it request the updated

block to sender and updates the block and its log.

Afterward the node sends a direct message to each node

in its leafset informing about the newer version of the

block thus each node in the leafset requests to the sender

the updated block. In consequence each node in the

leafset updates the block and changes are reflected in

nodes log.

6. Encoding

A similar encoding to that found in PAST is used, using

the same premise that storing k complete copies of a block

is not the most storage efficient method to achieve high

availability. They use ReedSolomon encoding. Search on

the Cloud add m additional checksum blocks to n original

data blocks allowing recovery from up to m losses of data

or checksum blocks [24][25][26].

This reduces the storage overhead required to tolerate m

failures from m to (m + n)/n times the block size (512 kb).

The storage overhead for availability is very small thanks

to multiple blocks that are created per file. Independent of

the encoding, also improving bandwidth. However, these

potential benefits must be weighed against the cost (in

terms of latency, aggregate query and network load, and

availability) of contacting several nodes to retrieve

multiple blocks.

7. Public Key Generation and File search.

Search on the cloud considers that the average user of a

file sharing system is not necessarily aware of the

existence of a file’s public key, but can provide relevant

content information related with the file they are

searching for. Our system assumes that when a user seeks

to retrieve a file, he or she will provide words related with

the name or content of the file they are searching for.

Given these words, our algorithm searches the node space

and retrieves the metadata entries that are the most

relevant. The metadata entries retrieval is done in the

following form: First for each new file that is added to the

system, a series of keywords are generated, these

keywords are formed from the file’s name and from the

file’s content. If the file is a text file, the log frequency

weight[28] of each word in the document is calculated,

the k words with the largest log frequency weight are then

selected as representatives of the file’s content. The log

frequency weight of a word w in a document d can be

defined as a function f(w):

Where wfw,d represents the number of times the word w

occurs in the document. If the file is of a movie type, then

the words taken as representative of the file are obtained

from the information imdb[27] provides about the movie

name. The data that is recollected are the name of the

actors participating in the film, the director name, the

movie genre, and the non-stop words in the film plot. The

imdb API[27] is utilized for recollecting this data. If the

system does not find any movie entry for the file name the

user provided, the system asks the user if the file name

they have selected is adequate for the film. Furthermore,

if the system finds many different movies that match the

file name the user provided, the system displays the

different film titles along with their plot information and

requests the user to select the film that matches the one

they are currently uploading, in this form ambiguity

problems are avoided. If the file is of any other type, then

the words taken as representative of the file content, are

the words in the file’s meta-data. With the filename and

the words representative of the file content, a series of

keywords are generated. Our system integrates the file

content information in the creation of keywords, because

the more file information that is provided, the less

ambiguity that exist when the file search is performed and

the better the retrieved results are. The keywords are

created through combinations of the words in the file

name and relevant file content data. With

lookup(keyword) the public key of each keyword is

computed. As mentioned previously, each keyword has an

associated Meta-Data block, that holds information about

the files whose name and content generated the keyword.

Therefore each time a file generates a certain keyword, an

entry to the keyword’s Meta-Data block is added with

relevant file information. The keyword’s public key

allows the retrieval of the file’s meta-data block to which

the file information is added. The data stored in the Meta-

data entry is the file name and file data content that

produced the keyword, the file’s public key, the relevancy

of the file with respect to the keyword, as well as other

file related information. The relevancy metric of a file

with respect to a keyword, is based on the number of

downloads the file has, as well as the frequency each

keyword terms presents in the file’s content and name.

When a User inputs a query to search for a file, from the

query, keywords are automatically created. The system

then searches for the keywords in the network. For each

keyword, the system retrieves from their meta-data block

the top K highest ranked files. (For visualization purposes

in our study K=three). The top K files from all the

analyzed keywords are then ordered with respect to their

number of downloads, and that is what is finally returned

and presented to the user. In essence our relevant metric

benefits files that many users have considered useful and

have downloaded, and files that present content relevant

to the user’s search intent.

8. Usability Inspection

In this section, we inspect the usability of Search on the

Cloud by utilizing a cognitive walkthrough methodology.

The cognitive walkthrough is a practical evaluation

method, in which the user examines the interface and with

the system intends to complete a series of assigned tasks.

The cognitive walkthrough helps identify the ease of

learning, use and usability of an application.

8.1 Users

The usability inspection of Search on the Cloud, was done

by 15 different users. Only two of the participants had

never used an online file sharing system, ten of the users

had utilized file sharing systems similar to PirateBay,

Only one of the participants had utilized a DHT

distributed file sharing system before, the system used

was POND.

8.2 Tasks

The tasks assigned to the users were: search for 6

different files on the system and incorporate 6 files to the

system. In the searching for files task, a description about

the content of each file was provided. The users had to

create a query for finding the file in the system. The

following is an example of a file description provided to

the users: ―Comedy film where Linsay Lohan and Tina

Fey appeared. Lohan played new girl, Cady Heron, that

tries to click with various high school groups”.

 In the file incorporation task the user was also provided a

description of each file. The user had to manually name

the file they were adding to the system. If the system

detected that the file name did not necessarily match the

file content or if the file was a movie file and the system

could not find the movie name in the IMDB database, the

system suggested a naming. Additionally the system

presented to the user the keywords that were generated

from the file’s content, these keywords could be modified

by the user.

8.3 Results

From the list of six files the users were asked to find on

the system, fourteen of the user were able to find all the

specified files, at times the file they were searching for

did not appear as the top result, but was within the list of

files returned by the system. Only one of the users had

trouble finding a Mexican film, the reason was that they

provided the video’s original Spanish name, yet in the

system, only the English version with its associated

English tags had been uploaded. Therefore the system

could not retrieve any results. To overcome this problem,

we have thought of integrating the movie’s original title

name, which is a field in IMDB. Other interesting things

observed, was that users tended to use proper names in

their search query. This made us believe that it might be

best to generate keywords from proper names and not

from verbs. Additionally we found that users tended to

incorporate to the query cultural facts about the actors in

the film. We therefore believe that integrating human

knowledge to our search system could provide better

results. All of the users expressed satisfaction with the

system’s speed and robustness in retrieving the files they

searched for. They also enjoyed the display of the top

most relevant files from the search.

In the file uploading tasks, in the case of the word files,

ten of the users in two of the word files decided to change

the keywords and input their own. These persons

expressed, that although the automatically keywords were

related to the file in question; they did not necessarily

believe they were the most relevant. This gave us insight

that a more thorough analysis of finding relevant

keywords in word files is needed.

Overall the users expressed comments of satisfaction

about the system.

9. Conclusions

In this work we presented the design of a more complete

distributed file sharing system that offers the user an

intuitive interaction. Our system, named Search on the

Cloud, is fault tolerant and presents high availability,

scalability, minimal costs of operation and deployment.

Our search procedure reads in a series of keywords

automatically generated from the search sentence query.

The keywords are then handled to retrieve a sorted set of

files using a relevant metric. Our system allows the user

to search for files based on relevant content and not on a

public key, which is not representative of the file. Our

system also leverages user input, by mining the file and

generating the file’s keywords automatically.

Additionally, for usability purposes files in our system are

categorized: Files can potentially belong to several

categories/folders. These categories allow the user to

query for files that could be associated with different

categories, increasing therefore, the chances of producing

a set with relevant matches in a reliable matter.

The novelty of our study is that we offer the user an

intuitive search modality, while still presenting an entirely

distributed approach.

Despite its preliminary character the research reported

here indicates it is possible to design and construct a

completely distributed file sharing system that does not

present to novice user’s foreign search interfaces.

References

[1] J Pouwelse, P Garbacki, D Epema, The bittorrent p2p file-

sharing system: Measurements and analysis, Peer-to-Peer

Systems IV, 2005 - Springer

[2] K Tutschku, A measurement-based traffic profile of

the eDonkey filesharing service, Passive and Active Network

Measurement, 2004 - Springer

[3] P van Emde Boas, R Kaas, Design and implementation of an

efficient priority queue, Theory of Computing Systems, 1976 -

Springer

[4] A Rowstron, Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems, Middleware

2001, 2001 - Springer

[5] M Castro, Practical Byzantine fault tolerance,

 Operating Systems Review, 1998 - usenix.org

[6] S Rhea, P Eaton, D Geels, Pond: the OceanStore prototype,

Proceedings of the 2nd …, 2003 – usenix.org

[7] SJ Mullender, Immediate files, Software: Practice and 1984 -

Wiley Online Library

[8] Sidebotham, Vohunes: The Andrew File System Data

Structuring Primitive, Proceedings of EUGG Autumn, 1986 –

 reports-archive.adm.cs.cmu.edu

[9] MK McKusick, WN Joy, SJ Leffle, A fast file system

for UNIX, ACM Transactions on 1984 – portal.acm.org

[10]Free Pastry Tutorials and documentation:

 https://trac.freepastry.org/wiki/, 5 September 2011

[13] E Adar, Free riding on gnutella, First Monday, 2000

Citeseer

[14] P Druschel, PAST: A large-scale, persistent peer-to-peer

storage utility

 [15] I Stoica, R Morris, D Karger, Chord: A scalable peer-to-

peer lookup service for internet applications, ACM

SIGCOMM,2001 - portal.acm.org

 [16] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and

Shenker, S. A

scalable content-addressable network. In Proc. ACM

SIGCOMM (San Diego, CA, August 2001),

[17] BY Zhao, J Kubiatowicz, Tapestry: An infrastructure for

fault-tolerant wide-area location and routing Computer, 2001 –

Citeseer

[18] S Saroiu, KP Gummadi, Measuring and analyzing the

characteristics of Napster and Gnutella hosts, Multimedia

systems, 2003

[19] Balakrishnan, MF Kaashoek, D Karger, Looking up data

in P2P systems of the ACM, 2003 - portal.acm.org

[20] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim

Weatherspoon, Ben Zhao, and John Kubiatowicz, Pond: the

OceanStore Prototype,. Appears in Proceedings of the 2nd

USENIX Conference on File and Storage Technologies (FAST

'03), March 2003

[21] F Dabek, MF Kaashoek, D Karger, Wide-area cooperative

storage with CFS, ACM SIGOPS, 2001 - portal.acm.org

[22] E Berlekamp, Bit-serial reed-solomon encoders,

Information Theory, IEEE Transactions on, 1982

ieeexplore.ieee.org

[23] http://www.ipoque.com/sites/default/files/mediafiles/docum

ents/internet-study-2008-2009.pdf, 5 September 2011

[24] J. S. Plank. A tutorial on Reed-Solomon coding for

fault-tolerance in RAID-like systems. Software —

Practice and Experience, 27(9):995–1012, Sept. 1997

[25] J.S. Plank, Note: Correction to the 1997 tutorial on Reed–

Solomon coding Plank - Software: Practice and Experience,

2005 - Wiley Online Library

[26] J.S. Plank, The RAID-6 liberation codes - Proceedings of

the 6th USENIX Conference on File, 2008

[27] http://www.imdbapi.com/ 20 September 20, 2011

[28] Hanna M. Wallach, Topic modeling: beyond bag-of-words.

In Proceedings of the 23rd international, 2006. conference on

Machine learning (ICML '06). ACM, New York, NY, USA,

http://www.springerlink.com/index/l251rj12233u05l4.pdf
http://www.springerlink.com/index/l251rj12233u05l4.pdf
http://www.springerlink.com/index/l251rj12233u05l4.pdf
http://www.springerlink.com/index/l251rj12233u05l4.pdf
http://www.springerlink.com/index/ag9qh1r5unppeecb.pdf
http://www.springerlink.com/index/ag9qh1r5unppeecb.pdf
http://www.springerlink.com/index/ag9qh1r5unppeecb.pdf
http://www.springerlink.com/index/ag9qh1r5unppeecb.pdf
http://www.springerlink.com/index/H63507N460256241.pdf
http://www.springerlink.com/index/H63507N460256241.pdf
http://www.springerlink.com/index/H63507N460256241.pdf
http://www.springerlink.com/index/404522p56nm85503.pdf
http://www.springerlink.com/index/404522p56nm85503.pdf
http://www.usenix.org/events/osdi99/full_papers/castro/castro_html/node5.html
http://www.usenix.org/events/osdi99/full_papers/castro/castro_html/node5.html
http://www.usenix.org/events/osdi99/full_papers/castro/castro_html/node5.html
http://usenix.org/
http://www.usenix.org/events/fast03/tech/rhea/rhea_html/
http://www.usenix.org/events/fast03/tech/rhea/rhea_html/
http://www.usenix.org/events/fast03/tech/rhea/rhea_html/
http://usenix.org/
http://onlinelibrary.wiley.com/doi/10.1002/spe.4380140407/abstract
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/itc/CMU-ITC-053.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/itc/CMU-ITC-053.pdf
http://reports-archive.adm.cs.cmu.edu/
http://portal.acm.org/citation.cfm?id=989.990
http://portal.acm.org/citation.cfm?id=989.990
http://portal.acm.org/citation.cfm?id=989.990
http://portal.acm.org/
https://trac.freepastry.org/wiki/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2031&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2031&rep=rep1&type=pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/HOTOS.2001.990064
http://www.computer.org/portal/web/csdl/doi/10.1109/HOTOS.2001.990064
http://portal.acm.org/citation.cfm?id=964723.383071
http://portal.acm.org/citation.cfm?id=964723.383071
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.7439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.7439&rep=rep1&type=pdf
http://www.springerlink.com/index/exx0tp59b80a0gd0.pdf
http://www.springerlink.com/index/exx0tp59b80a0gd0.pdf
http://portal.acm.org/citation.cfm?id=606299
http://portal.acm.org/citation.cfm?id=606299
http://oceanstore.cs.berkeley.edu/publications/papers/pdf/fast2003-pond.pdf
http://oceanstore.cs.berkeley.edu/publications/papers/pdf/fast2003-pond.pdf
http://portal.acm.org/citation.cfm?id=502054
http://portal.acm.org/citation.cfm?id=502054
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1056591
http://onlinelibrary.wiley.com/doi/10.1002/spe.631/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.631/abstract
http://portal.acm.org/citation.cfm?id=1364820

